ANo=0ID

Android Sync

Riley Andrews

Adapted from slides by:
Erik Gilling & Jamie Gennis




Android Graphics Pipeline Overview



Sync - Android Graphics Pipeline

Status Bar
Renderer

System Bar
Renderer

Background
Renderer

Icons/Widgets
Renderer




Sync

A

800
g

queue acquire

l > | >
roducer consumer
P dequeue release
('c ] (: |

7

manages flow of buffers between producers and consumers
two queues

producers dequeue unused buffers, fill them, the queue them
consumers acquire filled buffers, use them, then release them
when done



7y
<

-

o

Juus

QOO

SurfaceFlinger

a0
7

HW
Composer

L

e Responsible for compositing all
windows into the display(s)
e Just another GL client



7y
<

-

o

Juus

QOQO

SurfaceFlinger

L=
7

HW
Composer

A

® Started as a HAL for
accelerating composition

® Becoming the HAL for all things
display



Sync

e No explicit parallelism
e Every vendor implements implicit synchronization.

e Historically this has been the source of many hard to debug
graphics pipeline lock ups.



Sync

e Provide a simple API to let components signal when buffers are
ready/released.

e Allow synchronization primitives to be passed between processes
and between userspace and the kernel.

e Allow implementers to exploit hardware sync support

e Provide visibility into the graphics pipeline for debugging



Kernel Sync Building Blocks



Sync

15 16 18 19 22

® Represents monotonically increasing counter.

® Generally one instance per driver context

e allows hardware specific implementation

e sw_sync implementation provided



Sync

E Tz T >

® Represents a specific values on a parent timeline

® 3 states
O active
O signaled

O error

® starts active and transitions once to either signaled or error



Sync

15

18 19 22 >

\

Rclon

15 27 42

® A collection of sync_pts

® Backed by a file and can be passed to userspace.

e Main primitive drivers and userspace use to describe sync
events/dependencies.



Sync

15 18 19 22

\

Rclon

15 27 42

® Fences are a promise by the kernel
o that work has been queued
o and will complete in a "timely" manner



Sync

15

18

19

22

\

)

oIol

15

27

42

)

e Starts active and transitions to signaled with all of its sync_pts

become signaled or one becomes errored
e The list of sync pts is immutable after fence creation
® A sync pt can only be in one fence.

e Two fences can be merged to create a third fence containing
copies of the sync points in both.



Sync - Before Merge

- -
= =




Sync - After Merge




Implementing Sync



Sync

® supported in android-3.10 kernel + staged for quite some time

® (Core

o drivers/staging/android/sync.c
o drivers/staging/android/sync.h

® SW_Sync
o drivers/staging/android/sw_sync.c
o drivers/staging/android/sw_sync.h

® Docs
o Documentation/sync.txt



Sync - Imaginary Display Driver

Before Sync:
/~k
* assumes buf is ready to be displayed.
* returns when buffer is no longer on screen.

*/
void display buffer(struct dma buf *buf);

After Sync:
/*
* will display buf when fence is signaled.
* returns immediately with a fence that will signal when buf
* is no longer displayed.
*/

struct sync fence* display buffer (struct dma buf *buf,
struct sync fence *fence);



Sync

e Don't. Try using sw_sync first.
e Use sw_sync as a starting point.

e Don'ts
o Don't base a timeline on any "real” time.
o Don't allow userspace to explicitly
= create a fence
= signal a fence

o Don't access sync _timeline, sync_pt, or sync_fence elements
explicitly



Sync

® Dos
o Do provide useful names

o Do implement timeline value str and pt_value str
o Do implement fill driver_data



Sync Integration



Sync - OpenGL ES Integration

® EGL ANDROID native fence sync

O Wrap an Android fence fd in an EGLSyncKHR

O Create an Android fence fd from an EGLSyncKHR
® EGL ANDROID wait _sync

O Essentially the same as EGL_KHR_wait_sync

O Make the GPU wait for an EGLSyncKHR



Sync - EGL_ANDROID_native fence sync

e New "native fence" EGLSync object type

e New "native fence fd" attribute
O Can be set at creation time to either a valid fence fd or -1
O Can not be queried from an existing sync object

e New DupNativeFenceFD function
O Returns a dup of the "native fence fd" attribute

e Destroying the EGLSync closes the fence fd



Sync - Advantages of Explicit Sync

® | ess behavior variation between devices
® Better debugging support
® Upcoming jank metrics

O SurfaceFlinger presentation timestamps

O Flatland GPU benchmark



Dma Fence — Upstream graphics synchronization

e Upstream solution for cross device synchronization
o Infor 3.17
o Needed to support optimus hardware (?)

e what are dma fences for?
o unified interface for cross driver synchronization
o used for tracking work on a dma buf



Dma Fence — compared to sync

e one shot fences (active -> completed)

e supports timeline-esge sequences number based
fences

e support HW device to device sync (e.g. nv
semaphores)

e synchronous waits:
o dma fence: sync_fence_ wait()
o sync: sync_fence wait()

e asynchronous callbacks
o dma fence: fence_add_callback()
o sync: sync_fence wait_async()



Dma Fence — contrast with sync

e Fences are attached to dma buf directly.
o No userspace sync objects!
o Update dma fences based on read/write access
to buffers on pushbuffer submit.
e No merging of dma fences, just track lots of them.
e No timelines, no sync points.



Sync — no more

e Maarten Lankhorst has implemented sync on dma-
fence!
o Each sync point is implemented with a dma-fence
callback.
o Merging is handled by adding a “context id” to
each dma-fence, so that fences can be compared



Questions —

e [s there a need for explicit sync? Do we need both?
o Performance of bindless/compute
o Making performance w/suballocation fast

e How sync be de-staged, and work alongside dma
fence?



