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Android Graphics Pipeline Overview



Sync - Android Graphics Pipeline
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manages flow of buffers between producers and consumers
two queues

producers dequeue unused buffers, fill them, the queue them
consumers acquire filled buffers, use them, then release them
when done
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e Responsible for compositing all
windows into the display(s)
e Just another GL client
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® Started as a HAL for
accelerating composition

® Becoming the HAL for all things
display



Sync

e No explicit parallelism
e Every vendor implements implicit synchronization.

e Historically this has been the source of many hard to debug
graphics pipeline lock ups.



Sync

e Provide a simple API to let components signal when buffers are
ready/released.

e Allow synchronization primitives to be passed between processes
and between userspace and the kernel.

e Allow implementers to exploit hardware sync support

e Provide visibility into the graphics pipeline for debugging



Kernel Sync Building Blocks



Sync
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® Represents monotonically increasing counter.

® Generally one instance per driver context

e allows hardware specific implementation

e sw_sync implementation provided
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® Represents a specific values on a parent timeline

® 3 states
O active
O signaled

O error

® starts active and transitions once to either signaled or error
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® A collection of sync_pts

® Backed by a file and can be passed to userspace.

e Main primitive drivers and userspace use to describe sync
events/dependencies.
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® Fences are a promise by the kernel
o that work has been queued
o and will complete in a "timely" manner
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e Starts active and transitions to signaled with all of its sync_pts

become signaled or one becomes errored
e The list of sync pts is immutable after fence creation
® A sync pt can only be in one fence.

e Two fences can be merged to create a third fence containing
copies of the sync points in both.



Sync - Before Merge
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Sync - After Merge




Implementing Sync



Sync

® supported in android-3.10 kernel + staged for quite some time

® (Core

o drivers/staging/android/sync.c
o drivers/staging/android/sync.h

® SW_Sync
o drivers/staging/android/sw_sync.c
o drivers/staging/android/sw_sync.h

® Docs
o Documentation/sync.txt



Sync - Imaginary Display Driver

Before Sync:
/~k
* assumes buf is ready to be displayed.
* returns when buffer is no longer on screen.

*/
void display buffer(struct dma buf *buf);

After Sync:
/*
* will display buf when fence is signaled.
* returns immediately with a fence that will signal when buf
* is no longer displayed.
*/

struct sync fence* display buffer (struct dma buf *buf,
struct sync fence *fence);



Sync

e Don't. Try using sw_sync first.
e Use sw_sync as a starting point.

e Don'ts
o Don't base a timeline on any "real” time.
o Don't allow userspace to explicitly
= create a fence
= signal a fence

o Don't access sync _timeline, sync_pt, or sync_fence elements
explicitly



Sync

® Dos
o Do provide useful names

o Do implement timeline value str and pt_value str
o Do implement fill driver_data



Sync Integration



Sync - OpenGL ES Integration

® EGL ANDROID native fence sync

O Wrap an Android fence fd in an EGLSyncKHR

O Create an Android fence fd from an EGLSyncKHR
® EGL ANDROID wait _sync

O Essentially the same as EGL_KHR_wait_sync

O Make the GPU wait for an EGLSyncKHR



Sync - EGL_ANDROID_native fence sync

e New "native fence" EGLSync object type

e New "native fence fd" attribute
O Can be set at creation time to either a valid fence fd or -1
O Can not be queried from an existing sync object

e New DupNativeFenceFD function
O Returns a dup of the "native fence fd" attribute

e Destroying the EGLSync closes the fence fd



Sync - Advantages of Explicit Sync

® | ess behavior variation between devices
® Better debugging support
® Upcoming jank metrics

O SurfaceFlinger presentation timestamps

O Flatland GPU benchmark



Dma Fence — Upstream graphics synchronization

e Upstream solution for cross device synchronization
o Infor 3.17
o Needed to support optimus hardware (?)

e what are dma fences for?
o unified interface for cross driver synchronization
o used for tracking work on a dma buf



Dma Fence — compared to sync

e one shot fences (active -> completed)

e supports timeline-esge sequences number based
fences

e support HW device to device sync (e.g. nv
semaphores)

e synchronous waits:
o dma fence: sync_fence_ wait()
o sync: sync_fence wait()

e asynchronous callbacks
o dma fence: fence_add_callback()
o sync: sync_fence wait_async()



Dma Fence — contrast with sync

e Fences are attached to dma buf directly.
o No userspace sync objects!
o Update dma fences based on read/write access
to buffers on pushbuffer submit.
e No merging of dma fences, just track lots of them.
e No timelines, no sync points.



Sync — no more

e Maarten Lankhorst has implemented sync on dma-
fence!
o Each sync point is implemented with a dma-fence
callback.
o Merging is handled by adding a “context id” to
each dma-fence, so that fences can be compared



Questions —

e [s there a need for explicit sync? Do we need both?
o Performance of bindless/compute
o Making performance w/suballocation fast

e How sync be de-staged, and work alongside dma
fence?



