
Android Sync

Riley Andrews

Adapted from slides by: 
Erik Gilling & Jamie Gennis



Android Graphics Pipeline Overview



SurfaceFlinger

Sync - Android Graphics Pipeline

Status Bar
Renderer

Background
Renderer

Icons/Widgets
Renderer

System Bar
Renderer

Buffer
Queue

Buffer
Queue

Buffer
Queue

Buffer
Queue

GPU Buffer
Queue

HWComposer

Display 
Controller

GPU

GPU

GPU



release

acquire

Sync - BufferQueue

consumerdequeue

queue

producer

● manages flow of buffers between producers and consumers
● two queues
● producers dequeue unused buffers, fill them, the queue them
● consumers acquire filled buffers, use them, then release them 

when done



Sync - SurfaceFlinger

● Responsible for compositing all 
windows into the display(s)

● Just another GL client

SurfaceFlinger HW 
Composer



Sync - HW Composer

● Started as a HAL for 
accelerating composition

● Becoming the HAL for all things 
display

SurfaceFlinger HW 
Composer



Sync - Looks Great! What's Broken?

● No explicit parallelism

● Every vendor implements implicit synchronization.

● Historically this has been the source of many hard to debug 
graphics pipeline lock ups.



Sync - Framework Goals

● Provide a simple API to let components signal when buffers are 
ready/released.

● Allow synchronization primitives to be passed between processes 
and between userspace and the kernel.

● Allow implementers to exploit hardware sync support

● Provide visibility into the graphics pipeline for debugging



Kernel Sync Building Blocks



Sync - sync_timeline

● Represents monotonically increasing counter.

● Generally one instance per driver context

● allows hardware specific implementation

● sw_sync implementation provided

15 16 18 19 22 ...



Sync - sync_pt

● Represents a specific values on a parent timeline

● 3 states

o active

o signaled

o error

● starts active and transitions once to either signaled or error

15 16 18 19 22 ...

16 18 18



Sync - sync_fence

● A collection of sync_pts

● Backed by a file and can be passed to userspace.

● Main primitive drivers and userspace use to describe sync 
events/dependencies.

15 16 18 19 22 ...

16 15

2 5 15 27 42 ...



Sync - sync_fence (the promise)

● Fences are a promise by the kernel
o that work has been queued
o and will complete in a "timely" manner

15 16 18 19 22 ...

16 15

2 5 15 27 42 ...



Sync - sync_fence (more details)

● Starts active and transitions to signaled with all of its sync_pts 
become signaled or one becomes errored

● The list of sync_pts is immutable after fence creation

● A sync_pt can only be in one fence.

● Two fences can be merged to create a third fence containing 
copies of the sync points in both.

15 16 18 19 22 ...

16 15

2 5 15 27 42 ...



Sync - Before Merge

timeline A
value = 56

timeline B
value = 221

pt
value = 51

pt
value = 232

fence A fence B



Sync - After Merge

timeline A
value = 56

timeline B
value = 221

pt
value = 51

pt
value = 51

pt
value = 232

pt
value = 232

fence A fence C fence B



Implementing Sync



Sync - Core Implementation

● supported in android-3.10 kernel + staged for quite some time

● Core
o drivers/staging/android/sync.c
o drivers/staging/android/sync.h

● sw_sync
o drivers/staging/android/sw_sync.c
o drivers/staging/android/sw_sync.h

● Docs
o Documentation/sync.txt



Sync - Imaginary Display Driver

Before Sync:
/*
 * assumes buf is ready to be displayed.
 * returns when buffer is no longer on screen.
 */

void display_buffer(struct dma_buf *buf);

After Sync:
/*

 * will display buf when fence is signaled.

 * returns immediately with a fence that will signal when buf

 * is no longer displayed.

 */

struct sync_fence* display_buffer(struct dma_buf *buf,
                                  struct sync_fence *fence);



Sync - Implementing a sync_timeline

● Don't.  Try using sw_sync first.

● Use sw_sync as a starting point.

● Don'ts
o Don't base a timeline on any "real" time.
o Don't allow userspace to explicitly

▪ create a fence
▪ signal a fence

o Don't access sync_timeline, sync_pt, or sync_fence elements 
explicitly



Sync - Implementing a sync_timeline (cont.)

● Dos
o Do provide useful names
o Do implement timeline_value str and pt_value_str
o Do implement fill driver_data



Sync Integration



● EGL_ANDROID_native_fence_sync
o Wrap an Android fence fd in an EGLSyncKHR

o Create an Android fence fd from an EGLSyncKHR

● EGL_ANDROID_wait_sync
o Essentially the same as EGL_KHR_wait_sync

o Make the GPU wait for an EGLSyncKHR

Sync - OpenGL ES Integration



● New "native fence" EGLSync object type
● New "native fence fd" attribute

o Can be set at creation time to either a valid fence fd or -1
o Can not be queried from an existing sync object

● New DupNativeFenceFD function
o Returns a dup of the "native fence fd" attribute

● Destroying the EGLSync closes the fence fd

Sync - EGL_ANDROID_native_fence_sync



● Less behavior variation between devices
● Better debugging support
● Upcoming jank metrics
o SurfaceFlinger presentation timestamps

o Flatland GPU benchmark

Sync - Advantages of Explicit Sync



Dma Fence – Upstream graphics synchronization

● Upstream solution for cross device synchronization
○ In for 3.17
○ Needed to support optimus hardware (?)

● what are dma fences for?
○ unified interface for cross driver synchronization
○ used for tracking work on a dma buf



Dma Fence – compared to sync

● one shot fences (active -> completed)
● supports timeline-esqe sequences number based 

fences
● support HW device to device sync (e.g. nv 

semaphores)
● synchronous waits:

○ dma fence: sync_fence_wait()
○ sync: sync_fence_wait()

● asynchronous callbacks
○ dma fence: fence_add_callback()
○ sync: sync_fence_wait_async()  



Dma Fence – contrast with sync

● Fences are attached to dma buf directly.
○ No userspace sync objects!
○ Update dma fences based on read/write access 

to buffers on pushbuffer submit.
● No merging of dma fences, just track lots of them.
● No timelines, no sync points.



Sync – no more

● Maarten Lankhorst has implemented sync on dma-
fence!
○ Each sync point is implemented with a dma-fence 

callback.
○ Merging is handled by adding a “context id” to 

each dma-fence, so that fences can be compared



Questions – 

● Is there a need for explicit sync? Do we need both? 
○ Performance of bindless/compute
○ Making performance w/suballocation fast

● How sync be de-staged, and work alongside dma 
fence?


